Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method.

Identifieur interne : 001841 ( Main/Exploration ); précédent : 001840; suivant : 001842

Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method.

Auteurs : Michael W. Xie [États-Unis] ; Fulai Jin ; Heejun Hwang ; Seungmin Hwang ; Vikram Anand ; Mara C. Duncan ; Jing Huang

Source :

RBID : pubmed:15883373

Descripteurs français

English descriptors

Abstract

With the advent of complete genome sequences, large-scale functional analyses are generating new excitement in biology and medicine. To facilitate genomewide functional analyses, we developed a high-density cell array with quantitative and automated readout of cell fitness. Able to print at > x 10 higher density on a standard microtiter plate area than currently possible, our cell array allows single-plate screening of the complete set of Saccharomyces cerevisiae gene-deletion library and significantly reduces the amount of small molecules and other materials needed for the study. We used this method to map the relation between genes and cell fitness in response to rapamycin, a medically important natural product that targets the eukaryotic kinase Tor. We discuss the implications for pharmacogenomics and the uncharted complexity in genotype-dependent drug response in molecularly targeted therapies. Our analysis leads to several basic findings, including a class of gene deletions that confer better fitness in the presence of rapamycin. This result provides insights into possible therapeutic uses of rapamycin/CCI-779 in the treatment of neurodegenerative diseases (including Alzheimer's, Parkinson's, and Huntington's diseases), and cautions the possible existence of similar rapamycin-enhanceable mutations in cancer. It is well established in yeast that although TOR2 has a unique rapamycin-insensitive function, TOR1 and TOR2 are interchangeable in the rapamycin-sensitive functions. We show that even the rapamycin-sensitive functions are distinct between TOR1 and TOR2 and map the functional difference to a approximately 120-aa region at the N termini of the proteins. Finally, we discuss using cell-based genomic pattern recognition in designing electronic or optical biosensors.

DOI: 10.1073/pnas.0500297102
PubMed: 15883373
PubMed Central: PMC1091748


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method.</title>
<author>
<name sortKey="Xie, Michael W" sort="Xie, Michael W" uniqKey="Xie M" first="Michael W" last="Xie">Michael W. Xie</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, David Geffen School of Medicine, University of California, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jin, Fulai" sort="Jin, Fulai" uniqKey="Jin F" first="Fulai" last="Jin">Fulai Jin</name>
</author>
<author>
<name sortKey="Hwang, Heejun" sort="Hwang, Heejun" uniqKey="Hwang H" first="Heejun" last="Hwang">Heejun Hwang</name>
</author>
<author>
<name sortKey="Hwang, Seungmin" sort="Hwang, Seungmin" uniqKey="Hwang S" first="Seungmin" last="Hwang">Seungmin Hwang</name>
</author>
<author>
<name sortKey="Anand, Vikram" sort="Anand, Vikram" uniqKey="Anand V" first="Vikram" last="Anand">Vikram Anand</name>
</author>
<author>
<name sortKey="Duncan, Mara C" sort="Duncan, Mara C" uniqKey="Duncan M" first="Mara C" last="Duncan">Mara C. Duncan</name>
</author>
<author>
<name sortKey="Huang, Jing" sort="Huang, Jing" uniqKey="Huang J" first="Jing" last="Huang">Jing Huang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15883373</idno>
<idno type="pmid">15883373</idno>
<idno type="doi">10.1073/pnas.0500297102</idno>
<idno type="pmc">PMC1091748</idno>
<idno type="wicri:Area/Main/Corpus">001840</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001840</idno>
<idno type="wicri:Area/Main/Curation">001840</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001840</idno>
<idno type="wicri:Area/Main/Exploration">001840</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method.</title>
<author>
<name sortKey="Xie, Michael W" sort="Xie, Michael W" uniqKey="Xie M" first="Michael W" last="Xie">Michael W. Xie</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, David Geffen School of Medicine, University of California, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jin, Fulai" sort="Jin, Fulai" uniqKey="Jin F" first="Fulai" last="Jin">Fulai Jin</name>
</author>
<author>
<name sortKey="Hwang, Heejun" sort="Hwang, Heejun" uniqKey="Hwang H" first="Heejun" last="Hwang">Heejun Hwang</name>
</author>
<author>
<name sortKey="Hwang, Seungmin" sort="Hwang, Seungmin" uniqKey="Hwang S" first="Seungmin" last="Hwang">Seungmin Hwang</name>
</author>
<author>
<name sortKey="Anand, Vikram" sort="Anand, Vikram" uniqKey="Anand V" first="Vikram" last="Anand">Vikram Anand</name>
</author>
<author>
<name sortKey="Duncan, Mara C" sort="Duncan, Mara C" uniqKey="Duncan M" first="Mara C" last="Duncan">Mara C. Duncan</name>
</author>
<author>
<name sortKey="Huang, Jing" sort="Huang, Jing" uniqKey="Huang J" first="Jing" last="Huang">Jing Huang</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Cycle Proteins (genetics)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression (drug effects)</term>
<term>Gene Library (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Pharmacogenetics (methods)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sirolimus (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Tissue Array Analysis (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse sur puce à tissus (méthodes)</term>
<term>Banque de gènes (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Mutation (génétique)</term>
<term>Pharmacogénétique (méthodes)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du cycle cellulaire (génétique)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Sirolimus (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Expression des gènes</term>
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Pharmacogenetics</term>
<term>Tissue Array Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse sur puce à tissus</term>
<term>Pharmacogénétique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Gene Deletion</term>
<term>Gene Library</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de gènes</term>
<term>Clonage moléculaire</term>
<term>Délétion de gène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With the advent of complete genome sequences, large-scale functional analyses are generating new excitement in biology and medicine. To facilitate genomewide functional analyses, we developed a high-density cell array with quantitative and automated readout of cell fitness. Able to print at > x 10 higher density on a standard microtiter plate area than currently possible, our cell array allows single-plate screening of the complete set of Saccharomyces cerevisiae gene-deletion library and significantly reduces the amount of small molecules and other materials needed for the study. We used this method to map the relation between genes and cell fitness in response to rapamycin, a medically important natural product that targets the eukaryotic kinase Tor. We discuss the implications for pharmacogenomics and the uncharted complexity in genotype-dependent drug response in molecularly targeted therapies. Our analysis leads to several basic findings, including a class of gene deletions that confer better fitness in the presence of rapamycin. This result provides insights into possible therapeutic uses of rapamycin/CCI-779 in the treatment of neurodegenerative diseases (including Alzheimer's, Parkinson's, and Huntington's diseases), and cautions the possible existence of similar rapamycin-enhanceable mutations in cancer. It is well established in yeast that although TOR2 has a unique rapamycin-insensitive function, TOR1 and TOR2 are interchangeable in the rapamycin-sensitive functions. We show that even the rapamycin-sensitive functions are distinct between TOR1 and TOR2 and map the functional difference to a approximately 120-aa region at the N termini of the proteins. Finally, we discuss using cell-based genomic pattern recognition in designing electronic or optical biosensors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15883373</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>102</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2005</Year>
<Month>May</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method.</ArticleTitle>
<Pagination>
<MedlinePgn>7215-20</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>With the advent of complete genome sequences, large-scale functional analyses are generating new excitement in biology and medicine. To facilitate genomewide functional analyses, we developed a high-density cell array with quantitative and automated readout of cell fitness. Able to print at > x 10 higher density on a standard microtiter plate area than currently possible, our cell array allows single-plate screening of the complete set of Saccharomyces cerevisiae gene-deletion library and significantly reduces the amount of small molecules and other materials needed for the study. We used this method to map the relation between genes and cell fitness in response to rapamycin, a medically important natural product that targets the eukaryotic kinase Tor. We discuss the implications for pharmacogenomics and the uncharted complexity in genotype-dependent drug response in molecularly targeted therapies. Our analysis leads to several basic findings, including a class of gene deletions that confer better fitness in the presence of rapamycin. This result provides insights into possible therapeutic uses of rapamycin/CCI-779 in the treatment of neurodegenerative diseases (including Alzheimer's, Parkinson's, and Huntington's diseases), and cautions the possible existence of similar rapamycin-enhanceable mutations in cancer. It is well established in yeast that although TOR2 has a unique rapamycin-insensitive function, TOR1 and TOR2 are interchangeable in the rapamycin-sensitive functions. We show that even the rapamycin-sensitive functions are distinct between TOR1 and TOR2 and map the functional difference to a approximately 120-aa region at the N termini of the proteins. Finally, we discuss using cell-based genomic pattern recognition in designing electronic or optical biosensors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Michael W</ForeName>
<Initials>MW</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Fulai</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Heejun</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Seungmin</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anand</LastName>
<ForeName>Vikram</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Duncan</LastName>
<ForeName>Mara C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9374</RefSource>
</CommentsCorrections>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13560</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010597" MajorTopicYN="N">Pharmacogenetics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046888" MajorTopicYN="N">Tissue Array Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15883373</ArticleId>
<ArticleId IdType="pii">0500297102</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0500297102</ArticleId>
<ArticleId IdType="pmc">PMC1091748</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 1999 Mar;21(3):278-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 May 25;14(10):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15186745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2003 May;10(9):733-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12678776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Feb;4(2):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12563289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2002 Sep;2(4-5):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12192592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Jun 12;387(6634):708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9192896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2003 Apr 1;315(1):106-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16934-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12482937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2000 Feb;53(2):158-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Apr 19;23(18):3151-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15094765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2364-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Jul 7;102(1):109-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Sep 3;125(35):10543-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12940736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11930000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Feb 21;264(2):241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11250079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2002 Dec;1(2):103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12496357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2000 Jul;23(7):298-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10856939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2004 May;4(5):335-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Res Rev. 2001 Nov;21(6):513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1998 Oct;5(10):R245-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9818143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Assay Drug Dev Technol. 2004 Aug;2(4):363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15357917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Jul 1;62(13):3883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12097304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(7):229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15239820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 3;411(6833):107-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Apr;20(4):331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11923826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Sep;6(3):661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2000 Nov;1(2):120-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11253364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 9;116(1):121-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16594-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 May 10;296(5570):1127-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12004133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 10;403(6770):623-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2004;5(3):216-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Oct 30;151(3):551-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jan;22(1):62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14661025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Anand, Vikram" sort="Anand, Vikram" uniqKey="Anand V" first="Vikram" last="Anand">Vikram Anand</name>
<name sortKey="Duncan, Mara C" sort="Duncan, Mara C" uniqKey="Duncan M" first="Mara C" last="Duncan">Mara C. Duncan</name>
<name sortKey="Huang, Jing" sort="Huang, Jing" uniqKey="Huang J" first="Jing" last="Huang">Jing Huang</name>
<name sortKey="Hwang, Heejun" sort="Hwang, Heejun" uniqKey="Hwang H" first="Heejun" last="Hwang">Heejun Hwang</name>
<name sortKey="Hwang, Seungmin" sort="Hwang, Seungmin" uniqKey="Hwang S" first="Seungmin" last="Hwang">Seungmin Hwang</name>
<name sortKey="Jin, Fulai" sort="Jin, Fulai" uniqKey="Jin F" first="Fulai" last="Jin">Fulai Jin</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Xie, Michael W" sort="Xie, Michael W" uniqKey="Xie M" first="Michael W" last="Xie">Michael W. Xie</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001841 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001841 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15883373
   |texte=   Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15883373" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020